3D打印生物陶瓷在骨组织工程中的研究现状3D printing porous ceramic scaffolds for bone tissue engineering:A review
余文;孟昊业;孙逊;孙百川;陈鹏;刘雪剑;张凯红;陶笙;彭江;卢世璧;
摘要(Abstract):
总结近年来3D打印多孔陶瓷支架在骨组织工程中的研究现状及进展。查阅近年3D打印多孔陶瓷支架的相关文献,进行分析总结。与传统加工制造技术相比,3D打印多孔陶瓷支架有更明显优势,如增强结构可控性,提高生产效率等。更精细的支架可以采用3D打印技术制作。3D打印生物陶瓷在骨组织工程中有广阔的应用前景,通过对不同3D打印方法各自优势和不足的理解,能够设计新的骨替代物。
关键词(KeyWords): 3D打印;增材制造;骨组织工程;支架;活性生物陶瓷
基金项目(Foundation):
作者(Author): 余文;孟昊业;孙逊;孙百川;陈鹏;刘雪剑;张凯红;陶笙;彭江;卢世璧;
Email:
DOI:
参考文献(References):
- [1]Boschetti F,Tomei AA,Turri S,et al.Design,fabrication,and characterization of a composite scaffold for bone tissue engineering[J].In J Art Org,2008,31:697-707.
- [2]Studart,A.R.Additive manufacturing of biologically-inspired materials[J].Chem Soc Rev,2016,45:359-376.
- [3]Detsch R,Mayr H,Ziegler G.Formation of osteoclast-like cells on HA and TCP ceramics[J].Acta Biomateri,2008,4:139-148.
- [4]Yang Y.A comparative study of calcium sulfate artificial bone graft versus allograft in the reconstruction of bone defect after tumor curettage[J].Bio Med Res Int,2014,27:3092-3097.
- [5]Qi Y.Combined mesenchymal stem cell sheets and rh BMP-2-releasing calcium sulfate-rh BMP-2 scaffolds for segmental bone tissue engineering[J].Cell Transpl,2012,21:693-705.
- [6]Chen H.Effects of calcium sulfate combined with platelet-rich plasma on restoration of long bone defect in rabbits[J].Chin Med J,2016,29:557-561.
- [7]Sun H,Wu C,Dai K,et al.Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanitebioactive ceramics[J].Biomaterials,2006,27:5651-5657.
- [8]Liu Q.A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics[J].Biomaterials,2008,29:4792-4799.
- [9]Huang Y.In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration[J].Biomaterials,2009,50,5041-5048.
- [10]Tadic D,Epple M.A thorough physicochemical characterisation of14 calcium phosphate-based bone substitution materials in comparison to natural bone[J].Biomaterials,2004,25:987-994.
- [11]Baino F,Vitale-Brovarone C.Three-dimensional glass-derived scaffolds for bone tissue engineering:current trends and forecasts for the future[J].J Biomed Mater Res,2011,514-535.
- [12]Shao H.Bioactive glass-reinforced bioceramic ink writing scaffolds:sintering,microstructure and mechanical behavior[J].Biofabrication,2015,7:035010.
- [13]Lauria I.Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells[J].Acta Biomater,2016,44:85-96.
- [14]Fielding G,Bose S.Si O2 and Zn O dopants in three-dimensionallyprinted tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo[J].Acta Biomater,2013,9:9137-9148.
- [15]Tarafder S,Bose S.Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering:in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis[J].ACS Applied Materials Interfaces,2014,6:9955-9965.
- [16]Castilho M.Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement[J].Biofabrication,2014,6:025005.
- [17]Wang J.Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J].Advanced Materials(Deerfield Beach,Fla.),2014,26:4961-4966.
- [18]Zhang Y.Mesoporous bioactive glass nanolayer-functionalized3D-printed scaffolds for accelerating osteogenesis and angiogenesis[J].Nanoscale,2015,7:19207-19221.
- [19]Adel-Khattab D.Development of a synthetic tissue engineered 3D printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro[J].J Tissue Eng Reg Med,2016,10:2362.
- [20]Ma H.3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration[J].Biomaterials,2016,11:138-148.
- [21]Castilho M.Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application[J].ACS Applied Materials Interfaces,2017,65:344-355.
- [22]Chang CH.3D printing bioceramic porous scaffolds with good mechanical property and cell affinity[J].Plo S One,2015,10:143713.
- [23]Luo Y.Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration[J].ACS Applied Materials Interfaces,2015,7:24377-24383.
- [24]Dadhich P.A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold[J].ACS Applied Materials Interfaces,2016,8:11910-11924.
- [25]Meininger S.Strength reliability and in vitro degradation of threedimensional powder printed strontium-substituted magnesium phosphate scaffolds[J].Acta Biomaterialia,2016,31:401-411.
- [26]Yang C.3D-printed bioactive Ca3Si O5 bone cement scaffolds with nano surface structure for bone regeneration[J].Acc Applied Aater Interface,2007,9(7):5757.
- [27]Liu A.Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:An investigation of osteogenic capability and mechanical evolution[J].J Biomat Appl,2016,31:650-660.