藻酸钙复合自体软骨细胞修复羊膝关节负重区软骨缺损的实验研究Calcium alginate combined with autologous chondrocytes for repairing of full-thickness defects of femoral weight-bearing articular cartilage in goat
郝春香;黄靖香;眭翔;韩春姬;陈国庆;张昌盛;郭全义;刘舒云;
摘要(Abstract):
[目的]以中国山羊为动物模型,观察藻酸钙复合自体软骨细胞修复膝关节负重区软骨缺损的可行性。[方法]取羊肩关节软骨,分离、培养软骨细胞,蕃红"O"、 Giemsa及Ⅱ型胶原免疫组织化学染色对其进行鉴定。将自体软骨细胞与藻酸钙凝胶复合,修复山羊股骨髁负重区全层软骨缺损(直径6 mm),实验分为四组:(1)缺损旷置组:缺损内未植入任何组织;(2)骨膜覆盖组:自体骨膜覆盖缺损区;(3)藻酸钙+骨膜组:凝胶植入软骨缺损区,并用自体骨膜覆盖;(4)藻酸钙+细胞+骨膜组:藻酸钙复合自体软骨细胞植入软骨缺损区,自体骨膜覆盖;分别于手术后3、6个月取材,通过大体观察及组织学评分检测修复效果。[结果]软骨细胞复合物蕃红"O"、 Giemsa染色及Ⅱ型胶原免疫组化染色结果均为阳性,将藻酸钙凝胶-软骨细胞复合物用于羊负重区关节面软骨缺损修复,从大体观察和组织学评分进行比较,发现各组均有不同程度的组织修复,藻酸钙+细胞+骨膜组效果最好,与其他组差异有统计学意义(P<0.05)。[结论]藻酸钙凝胶-软骨细胞复合物结合自体骨膜覆盖,可较好修复山羊膝关节负重区软骨缺损。
关键词(KeyWords): 软骨;组织工程;再生
基金项目(Foundation): 国家重点研发计划(编号:2017YFC1103404,2017YFC1104102);; 国家高技术研究发展计划(863计划)(编号:2012AA020502);; 国家自然科学基金项目(编号:81472092,81772319);; 北京市自然科学基金项目(编号:7172203);; 北京市科技专项(编号:Z161100005016059)
作者(Author): 郝春香;黄靖香;眭翔;韩春姬;陈国庆;张昌盛;郭全义;刘舒云;
Email:
DOI:
参考文献(References):
- [1] Marijinissen WJCM, van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte–delivery substance in combination with a non-woven scaffold for cartilage tissue engineering[J]. Biomaterials,2002, 23(6):1511-1517.
- [2] Bryant SJ, Anseth KS. The effects of scaffolds thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide)hydro gels[J]. Biomaterials, 2001, 22(6):619-626.
- [3] Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells[J]. Trends Biotechnol, 1990, 8(3):71-78.
- [4] Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen PHenotype when cultured in agarose gels[J]. Cell 1982, 30(1):215-224.
- [5] Hesterman PJ, Reading A, Smith AU. Homotransplantation of articular cartilage and isolated chondrocytes[J]. J Bone Joint Surg Br,1968, 50(2):184.
- [6] Steven B, Cohen, Cay M, Meirisch, et al. The use of absorbable copolymer pads with alginate and cells for articular cartilage repair in rabbits[J]. J Biomaterials, 2003, 24(15):2653-2660.
- [7] Yan S, Wang T, Feng L, et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid)and alginate for cartilage tissue engineering[J]. Biomacromolecules, 2014, 15(12):4495-508.
- [8] Stoddart MJ, Grad S, Eglin D, et al. Cells and biomaterials in cartilage tissue engineering[J]. Regenerative Med, 2009, 4(1):81-98.
- [9] Park H, Lee KY. Alginate/hyaluronate hydrogels for cartilage regeneration[J]. J Controlled Release, 2011, 152(l l):233-234.
- [10] Dobratz EJ, Kim SW, Voglewede A, et al. Injectable cartilage:using alginate and human chondrocytes[J]. Arch Facial Plastic Surg,2009, 11(1):40-47.
- [11] Wang CC, Yang KC, Lin KH, et al. Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold[J]. Biomaterials, 2012, 33(1):120-127.
- [12] Masuda K, Miyazaki T, Pfister B, et al. Human tissue engineered cartilage by the alginate-recovered-chondrocyte method after an expansion in monolayer[J]. Trans Orthop Res Soc, 2002, 21(27):467.
- [13] Masuda K, Sah RL, Hejna MJ, et al. A novel twostep method for the formation of tissue engineered cartilage:the alginate-recovered-chondrocyte(ARC)method[J]. J Orthop Res, 2002, 21(1):139-148.
- [14] Buckwalter JA. Evaluating methods of restoring cartilaginous articular surfaces[J]. Clin Orthop, 1999, 367(367):224-238.
- [15] Breinan HA, Hsu HP, Spector M. Chondral defects in animalmodels:effects of selected repair procedures in canines[J]. Clin Orthop, 2001, 391(391):219-230.