膝关节骨性关节炎与类风湿性关节炎患者骨小梁的显微结构分析Microstructure of trabecular bone from osteoarthritis and rheumatoid arthritis patients
计忠伟;包倪荣;赵建宁;
摘要(Abstract):
[目的]通过显微计算机断层扫描(micro-computed tomography,Micro-CT)检测胫骨平台软骨下骨小梁显微结构,分析膝关节骨性关节炎(osteoarthritis,OA)与类风湿性关节炎(rheumatoid arthritis,RA)患者骨小梁的显微结构。[方法]收集人工全膝关节置换术(total knee arthroplasty,TKA)中截取的OA及RA患者胫骨平台,用Micro-CT扫描标本的内、外侧胫骨平台软骨下骨小梁,获得显微结构参数进行分析比较。[结果]膝关节骨性关节炎患者内侧胫骨平台软骨下骨小梁的骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数目(Tb.N)大于类风湿性关节炎内侧胫骨平台软骨下骨小梁,骨表面积体积比(BS/BV)、骨小梁间隔(Tb.Sp)、结构模型指数(SMI)、各项异性的程度(DA)则小于类风湿性关节炎内侧胫骨平台软骨下骨小梁;而外侧胫骨平台软骨下骨小梁,骨性关节炎的BS/BV、Tb.Th、Tb.N大于类风湿性关节炎,Tb.Sp和DA则相反。膝关节骨性关节炎内侧胫骨平台软骨下骨小梁的BV/TV、Tb.Th、Tb.N大于其外侧,BS/BV、Tb.Sp、SMI小于其外侧。而类风湿性关节炎内侧胫骨平台软骨下骨小梁的BV/TV、Tb.Th小于其外侧。BS/BV、SMI、DA与其他显微结构参数间存在着相关关系。[结论]膝关节骨性关节炎与类风湿性关节炎及两种疾病的内、外侧胫骨平台软骨下骨小梁显微结构存在差异,这对人工膝关节假体的力学环境分析有一定的指导作用。
关键词(KeyWords): 骨性关节炎;类风湿性关节炎;骨小梁;Micro-CT
基金项目(Foundation): 江苏省科技项目(编号:BK2012776)
作者(Author): 计忠伟;包倪荣;赵建宁;
Email:
DOI:
参考文献(References):
- [1]Charnley J.Anchorage of the femoral head prosthesis to the shaft of the femur[J].J Bone Joint Surg Br,1960,42-B:28-30.
- [2]Cj W,Jf S.Design and simulation of a femoral component peg in total knee replacement[J].Key Eng Mater,2011,450:111-114.
- [3]Race A,Miller MA,Ayers DC,et al.Early cement damage around a femoral stem is concentrated at the cement/bone interface[J].J Biomech,2003,4:489-496.
- [4]Mann KA,Allen MJ,Ayers DC.Pre-yield and post-yield shear behavior of the cement-bone interface[J].J Orthop Res,1998,3:370-378.
- [5]Jiang Y,Zhao J,Liao EY,et al.Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies[J].J Bone Miner Metab,2005,23:122-131.
- [6]伦学刚,谈志龙,白人骁.骨质疏松与骨性关节炎关系的研究进展[J].中国骨伤,2007,12:876-878.
- [7]Kamibayashi L,Wyss UP,Cooke TD,et al.Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis[J].Calcif Tissue Int,1995,1:69-73.
- [8]Chappard C,Peyrin F,Bonnassie A,et al.Subchondral bone microarchitectural alterations in osteoarthritis:a synchrotron micro-computed tomography study[J].Osteoarthritis Cartilage,2006,3:215-223.
- [9]Roux C.Osteoporosis in inflammatory joint diseases[J].Osteoporos Int,2011,2:421-433.
- [10]Shibuya K,Hagino H,Morio Y,et al.Cross-sectional and longitudinal study of osteoporosis in patients with rheumatoid arthritis[J].Clin Rheumatol,2002,2:150-158.
- [11]Hsu RW,Himeno S,Coventry MB,et al.Normal axial alignment of the lower extremity and load-bearing distribution at the knee[J].Clin Orthop,1990,255:215-227.
- [12]Hurwitz DE,Sumner DR,Andriacchi TP,et al.Dynamic knee loads during gait predict proximal tibial bone distribution[J].J Biomech,1998,5:423-430.
- [13]Patel V,Issever AS,Burghardt A,et al.Micro CT evaluation of normal and osteoarthritic bone structure in human knee specimens[J].J Orthop Res,2003,1:6-13.
- [14]孟瑶,雷涛.骨的微结构与骨强度关系的研究进展[J].中国骨质疏松杂志,2011,9:831-834,813.
- [15]Odgaard A.Three-dimensional methods for quantification of cancellous bone architecture[J].Bone,1997,4:315-328.
- [16]Ciarelli MJ,Goldstein SA,Kuhn JL,et al.Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography[J].J Orthop Res,1991,5:674-682.
- [17]Bevill G,Eswaran SK,Gupta A,et al.Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone[J].Bone,2006,6:1218-1225.
- [18]Arlot ME,Burt-Pichat B,Roux JP,et al.Microarchitecture influences microdamage accumulation in human vertebral trabecular bone[J].J Bone Miner Res,2008,10:1613-1618.