全膝关节置换关节间隙压力传感器的研究现状Current research on joint gap pressure sensor for total knee arthroplasty
孙晓威;张启栋;任鹏鹏;郭万首;
摘要(Abstract):
近20年来采用间隙压力测量技术探究全膝置换术中的间隙平衡已成为全膝置换技术改良的研究热点之一,为了帮助术者更好的判断间隙平衡,研究者们尝试应用量化的数据去评价关节间隙压力。不同类型的测量方法及测量装置的开发层出不穷。本文综述了全膝关节置换术中胫骨垫片式关节间隙压力测量传感器的研究进展及发展现状。
关键词(KeyWords): 测压传感器;全膝关节置换术;软组织平衡
基金项目(Foundation):
作者(Author): 孙晓威;张启栋;任鹏鹏;郭万首;
Email:
DOI:
参考文献(References):
- [1] Nagai K, Muratsu H, Takeoka Y, et al. The influence of joint distraction force on the soft-tissue balance using modified gap-balancing technique in posterior-stabilized total knee arthroplasty[J]. J Arthroplasty, 2017, 32(10):2995-2999.
- [2] Takasago T, Nitta A, Goto T, et al. Intraoperative soft tissue balance using novel medial preserving gap technique in posterior-stabilized total knee arthroplasty:comparison to measured resection technique[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(11):3474-3481.
- [3] Cidambi KR, Robertson N, Borges C, et al. Intraoperative comparison of measured resection and gap balancing using a force sensor:a prospective, randomized controlled trial[J]. J Arthroplasty,2018, 33(7s):126-130.
- [4] D'angelo F, Puricelli M, Binda T, et al. The use of an electronic system for soft tissue balancing in primary total knee arthroplasties:clinical and radiological evaluation[J]. Surg Technol Int,2015, 26:261-268.
- [5] Gustke KA, Golladay GJ, Roche MW, et al. Increased satisfaction after total knee replacement using sensor-guided technology[J].Bone Joint J, 2014, 96(10):1333-1338.
- [6] Gustke KA, Golladay GJ, Roche MW, et al. A new method for defining balance:promising short-term clinical outcomes of sensorguided TKA[J]. J Arthroplasty, 2014, 29(5):955-960.
- [7] Gustke KA, Golladay GJ, Roche MW, et al. Primary TKA patients with quantifiably balanced soft-tissue achieve significant clinical gains sooner than unbalanced patients[J]. Adv Orthop, 2014,2014:628-695.
- [8] Gustke KA, Golladay GJ, Roche MW, et al. A targeted approach to ligament balancing using kinetic sensors[J]. J Arthroplasty, 2017,32(7):2127-2132.
- [9] Zdero R, Fenton PV, Rudan J, et al. Fuji film and ultrasound measurement of total knee arthroplasty contact areas[J]. J Arthroplasty, 2001, 16(3):367-375.
- [10] Szivek JA, Anderson PL and Benjamin JB. Average and peak contact stress distribution evaluation of total knee arthroplasties[J]. J Arthroplasty, 1996, 11(8):952-963.
- [11] Harris ML, Morberg P, Bruce WJ, et al. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty:a comparison of K-scan sensor and Fuji film[J]. J Biomech, 1999,32(9):951-958.
- [12] Bachus KN, Demarco AL, Judd KT, et al. Measuring contact area,force, and pressure for bioengineering applications:using Fuji Film and TekScan systems[J]. Med Eng Phys, 2006, 28(5):483-488.
- [13] Wallace AL, Harris ML, Walsh WR, et al. Intraoperative assessment of tibiofemoral contact stresses in total knee arthroplasty[J].J Arthroplasty, 1998, 13(8):923-927.
- [14] Ostermeier S, Schlomach C, Hurschler C, et al. Dynamic in vitro measurement of posterior cruciate ligament load and tibiofemoral stress after TKA in dependence on tibiofemoral slope[J]. Clin Biomech(Bristol, Avon), 2006, 21(5):525-532.
- [15] Lee TQ. Biomechanics of hyperflexion and kneeling before and after total knee arthroplasty[J]. Clin Orthop Surg, 2014, 6(2):117-126.
- [16] Steinbruck A, Schroder C, Woiczinski M, et al. Femorotibial kinematics and load patterns after total knee arthroplasty:an in vitro comparison of posterior-stabilized versus medial-stabilized design[J]. Clin Biomech(Bristol, Avon), 2016, 33(1):42-48.
- [17] Steinbruck A, Schroder C, Woiczinski M, Set al. Mediolateral femoral component position in TKA significantly alters patella shift and femoral roll-back[J]. Knee Surg Sports Traumatol Arthrosc,2017, 25(11):3561-3568.
- [18] Steinbruck A, Fottner A, Schroder C, et al. Influence of mediolateral tibial baseplate position in TKA on knee kinematics and retropatellar pressure[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8):2602-2608.
- [19] Agins HJ, Harder VS, Lautenschlager EP, et al. Effects of sterilization on the Tekscan digital pressure sensor[J]. Med Eng Physics,2003, 25(9):775-780.
- [20] Kaufman KR, Kovacevic N, Irby SE, et al. Instrumented implant for measuring tibiofemoral forces[J]. J Biomech, 1996, 29(5):667-671.
- [21] Crottet D, Kowal J, Sarfert SA, et al. Ligament balancing in TKA:evaluation of a force-sensing device and the influence of patellar eversion and ligament release[J]. J Biomech, 2007, 40(8):1709-1715.
- [22] Crottet D, Maeder T, Fritschy D, et al. Development of a force amplitude-and location-sensing device designed to improve the ligament balancing procedure in TKA[J]. IEEE Trans Biomed Eng,2005, 52(9):1609-1611.
- [23] Anastasiadis A, Magnissalis E, Tsakonas A. A novel intraoperative sensor for soft tissue balancing in total knee arthroplasty[J]. J Med Eng Technol, 2010, 34(7-8):448-454.
- [24] Wasielewski RC, Galat DD, Komistek RD. Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients[J]. J Biomech, 2005, 38(2):333-339.
- [25] Chow JC, Breslauer L. The use of intraoperative sensors significantly increases the patient-reported rate of improvement in primary total knee arthroplasty[J]. Orthopedics, 2017, 40(4):e648-e651.
- [26] Chow J, Law TY, Roche M. Sensor-based soft tissue balancing in total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc,2018, 1093:327-334.
- [27] Van Der Linde JA, Beath KJ, Leong AKL. The reliability of sensorassisted soft tissue measurements in primary total knee arthroplasty[J]. J Arthroplasty, 2018, 33(8):2502-2505.
- [28] Cho KJ, Seon JK, Jang WY, et al. Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty[J]. BMC Musculoskelet Disord, 2018, 19(1):266.
- [29] Golladay GJ, Bradbury TL, Gordon AC, et al. Are patients more satisfied with a balanced total knee arthroplasty[J]. J Arthroplasty,2019, 34(7s):195-200.
- [30] Manning WA, Blain A, Longstaff L, et al. A load-measuring device can achieve fine-tuning of mediolateral load at knee arthroplasty but may lead to a more lax knee state[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(7):2238-2250.
- [31] Lakra A, Sarpong NO, Jennings EL, et al. The learning curve by operative time for soft tissue balancing in total knee arthroplasty using electronic sensor technology[J]. J Arthroplasty, 2019, 34(3):483-487.
- [32] Woon CYL, Carroll KM, Lyman S, et al. Dynamic sensor-balanced knee arthroplasty:can the sensor"train"the surgeon[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 5(2):202-210.
- [33] D'Lima DD, Patil S, Steklov N, et al. The 2011 ABJS Nicolas Andry Award:'Lab'-in-a-knee:in vivo knee forces, kinematics,and contact analysis[J]. Clin Orthop, 2011, 469(10):2953-2970.
- [34] Roth JD, Howell SM, Hull ML. An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty[J]. J Biomech Eng, 2017, 139(4):271-279.
- [35] Jiang H, Xiang S, Guo Y, et al. A wireless visualized sensing system with prosthesis pose reconstruction for total knee arthroplasty[J]. Sensors(Basel), 2019, 19(13):147-152.