11β-HSD1介导的内源性激素代谢途径与激素性股骨头坏死11 beta-HSD1-mediated endogenous hormone metabolic pathway and steroid-induced osteonecrosis of the femoral head
何晓铭;陈哓俊;沈莹姗;陈镇秋;张庆文;何伟;魏秋实;
摘要(Abstract):
过量激素刺激骨髓间质干细胞(bone marrow stromal cells, BMSCs)使得成骨能力减弱、成脂能力增强是导致股骨头坏死(osteonecrosis of the femoral head, ONFH)的主要原因,调控机制尚未阐明。最新的研究发现激素引起骨组织中11β-HSD1活性增强,导致骨局部内源性激素积聚可抑制骨形成。抑制11β-HSD1活性可促进成骨细胞分化,抑制脂肪分化。故推测内源性激素在ONFH的发病过程中起到重要作用,在激素与BMSCs活性变化之间可能存在11β-HSD1调控的内源性激素代谢途径参与ONFH的发病过程。因此,深入研究11β-HSD1介导的内源性激素代谢途径在ONFH发病中的作用,对深入了解ONFH的发病机制具有重要意义。
关键词(KeyWords): 11β-羟基类固醇脱氢酶1,;内源性激素;骨髓基质干细胞;激素性股骨头坏死
基金项目(Foundation): 国家自然科学基金面上项目资助(编号:81473697,81573996,81873327);; 广东省科技厅-广东省中医药科学院联合科研专项项目(编号:2016A020226028);; 广东省自然科学基金资助项目(编号:2017A030313698);; 广东省中医药强省建设专项中医优势病种(股骨头坏死)突破项目(粤中医函[2015]19号);; 广东省名中医(何伟)传承工作室建设项目(粤中医办函[2017]17号);; 高水平大学建设项目(编号:广中医研[2017]10号);; 广东省自然科学基金基于RNA-seq的早期激素性股骨头坏死PBMC的转录组学机制及祛瘀法的干预作用(编号:2015A030313353);; 广州市科技计划项目基于RNA-seq的激素性股骨头坏死不同病理状态的转录组学机制及祛瘀法的干预作用(编号:201510010228)
作者(Author): 何晓铭;陈哓俊;沈莹姗;陈镇秋;张庆文;何伟;魏秋实;
Email:
DOI:
参考文献(References):
- [1] Zalavras CG, Lieberman JR. Osteonecrosis of the femoral head:evaluation and treatment[J]. J Am Acad Orthop Surg, 2014, 22(7):455-464.
- [2] Houdek MT, Wyles CC, Packard BD, et al. Decreased osteogenicactivity of mesenchymal stem cells in patients with corticosteroidinduced osteonecrosis of the femoral head[J]. J Arthroplasty,2016, 31(4):893-898.
- [3] Sheng H, Sheng CJ, Cheng XY, et al. Pathomorphological changes of bone marrow adipocytes in process of steroid-associated osteonecrosis[J]. Int J Clin Exp Pathol, 2013, 6(6):1046-1050.
- [4] Cooper MS. Glucocorticoids in bone and joint disease:the good,the bad and the uncertain[J]. Clin Med, 2012, 12(3):261-265.
- [5] Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, et al. Piper sarmentosum effects on 11β-hydroxysteroid dehydrogenase type 1 enzyme in serum and bone in rat model of glucocorticoid-induced osteoporosis[J]. Molecules, 2016, 21(11):1-10.
- [6] Wang L, Luo DK, Pan ZY. Expression of 11β-HSD in steroid-induced avascular necrosis of the femoral head[J]. Mol Med Rep,2013, 7(5):1482-1486.
- [7] Yu Y, Wei N, Stanford C, et al. In vitro effects of RU486 on proliferation and differentiation capabilities of human bone marrow mesenchymal stromal cells[J]. Steroids, 2012, 77(1-2):132-137.
- [8] Wang L, Fan J, Lin YS, et al. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells[J]. Mol Med Rep, 2015,11(4):2711-2716.
- [9] Song M, Zhao D, Wei S, et al. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone[J]. Bioelectromagnetics, 2014, 35(7):479-490.
- [10] Chen H, Xing J, Hu X, et al. Inhibition of heat shock protein 90rescues glucocorticoid-induced bone loss through enhancing bone formation[J]. J Steroid Biochem Mol Biol. 2017 Jul;171:236-246.
- [11] Zhang Z, Coutinho AE, Man TY, et al. Macrophage 11β-HSD-1deficiency promotes inflammatory angiogenesis[J]. J Endocrinol.2017, 234(3):291-299.
- [12] Houdek MT, Wyles CC, Packard BD, et al. Decreased Osteogenic Activity of Mesenchymal Stem Cells in Patients With Corticosteroid-Induced Osteonecrosis of the Femoral Head[J]. J Arthroplasty, 2016, 31(4):893-898.
- [13] Eyre LJ, Rabbitt EH, Bland R, et al. Expression of 11 beta-hydroxysteroid dehydrogenase in rat osteoblastic cells:pre-receptor regulation of glucocorticoid responses in bone[J]. J Cell Biochem,2001, 81(3):453-462.
- [14] Morgan SA, Mc Cabe EL, Gathercole LL, et al. 11β-HSD1 is themajor regulator of the tissue-specific effects of circulating glucocorticoid excess[J]. Proc Natl Acad Sci USA, 2014, 111(24):E2482-24891.
- [15] Hardy RS, Raza K, Cooper MS. Glucocorticoid metabolism in rheumatoid arthritis[J]. Ann N Y Acad Sci, 2014, 1318(1):18-26.
- [16] Nanus DE, Filer AD, Hughes B, et al. TNFαregulates cortisol metabolism in vivo in patients with inflammatory arthritis[J]. Ann Rheum Dis, 2015, 74(2):464-469.
- [17] Tiganescu A, Tahrani AA, Morgan SA, et al. 11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects[J]. J Clin Invest, 2013, 123(7):3051-3060.
- [18] Terao M, Tani M, Itoi S, et al. 11β-hydroxysteroid dehydrogenase1 specific inhibitor increased dermal collagen content and promotes fibroblast proliferation[J]. PLo S One, 2014, 9(3):e93051.
- [19] Tiganescu A, Hupe M, Uchida Y, et al. Increased glucocorticoid activation during mouse skin wound healing[J]. J Endocrinol,2014, 221(1):51-61.
- [20] Hardy RS, Raza K, Cooper MS. Endogenous glucocorticoids in inflammation:contributions of systemic and local responses[J].Swiss Med Wkly, 2012, 142:w13650.
- [21] Hardy RS, Seibel MJ, Cooper MS. Targeting 11β-hydroxysteroid dehydrogenases:a novel approach to manipulating local glucocorticoid levels with implications for rheumatic disease[J]. Curr Opin Pharmacol, 2013, 13(3):440-444.
- [22] Kaur K, Hardy R, Ahasan MM, et al. Synergistic induction of local glucocorticoid generation by inflammatory cytokines and glucocorticoids:implications for inflammation associated bone loss[J].Ann Rheum Dis, 2010, 69(6):1185-1190.
- [23] Cooper MS, Blumsohn A, Goddard PE, et al. 11beta-hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone[J]. J Clin Endocrinol Metab, 2003, 88(8):3874-3877.
- [24] Wu L, Qi H, Zhong Y, et al. 11β-Hydroxysteroid dehydrogenase type 1 selective inhibitor BVT.2733 protects osteoblasts against endogenous glucocorticoid induced dysfunction[J]. Endocr J, 2013,60(9):1047-1058.
- [25] Park JS, Bae SJ, Choi SW, et al. A novel 11β-HSD1 inhibitor improves diabesity and osteoblast differentiation[J]. J Mol Endocrinol, 2014, 52(2):191-202.