Micro-CT评价镁合金材料置入物周围成骨Micro- computed tomography for evaluation of bone formation around magnesium alloys versus PLGA implants in rabbits
徐亦驰;尹合勇;孙振;孟昊业;肖波;余晓明;苑志国;汪爱媛;彭江;卢世璧;
摘要(Abstract):
[目的]通过Micro-CT图像和其数值数据评价并对比镁合金与PLGA在兔股骨髁内对新骨形成的促进作用。[方法]取体重2.2 kg、3个月龄的雄性新西兰大白兔30只,随机分为3组,每组10只,表面微弧氧化处理的AZ31镁合金棒材(以下简称"镁棒")30个和PLGA棒材30个分别置入到30只兔子的右、左侧股骨髁。置入后4、8、12周,3个时间点依次取出3组兔子的双侧股骨髁,利用Micro-CT扫描图像以及生成数据定量对镁合金和PLGA置入部位周围新骨生成情况进行评价和比较。[结果]在4周以前,骨生成活动并不十分活跃,两种材料置入周围的新骨骨体积分数无明显差异;在第8~12周,两组的新骨生成速度加快,尤其是AZ31组新生骨体积分数增长更为明显,且AZ31组的新骨骨体积分数明显高于PLGA组(P<0.05)。新生骨表面积与其体积之比(BS/BV)随着实验进展持续降低,在第8~12周时降低速度最快,且在第12周时AZ31周围新生骨BS/BV低于PLGA组出现统计学意义(P<0.05)。随着置入物的降解,两组新生骨均出现骨小梁厚度增加,数目增多,而间距减少,同样在第8~12周,AZ31组骨小梁厚度和数目的增长明显高于PLGA组(P<0.05),且3个时间点的AZ31镁合金组和PLGA组骨小梁间距减小差异均有统计学意义(P<0.05)。此外,实验过程中不仅骨量增加,新生骨组织矿物密度随着实验进展也在持续增加,但不同材料的两组间并无明显差异。[结论]AZ31镁合金在体内对新生骨生长的促进作用明显优于PLGA材料。
关键词(KeyWords): Micro-CT;镁合金;PLGA;骨生成;体内实验
基金项目(Foundation): 国家自然科学基金(NFSC,编号:81572148,51361130034);; 国家重点基础研究发展计划(973计划,编号:2012CB518106);; 军队十二五发展计划(编号:BWS11J025);; 军队重点科学研究项目(编号:BWS13C029);; 北京市自然科学基金(编号:Z141107004414044)
作者(Author): 徐亦驰;尹合勇;孙振;孟昊业;肖波;余晓明;苑志国;汪爱媛;彭江;卢世璧;
Email:
DOI:
参考文献(References):
- [1]Staiger MP,Pietak AM,Huadmai J,et al.Magnesium and its alloys as orthopedic biomaterials:a review[J].Biomaterials,2006,27(9):1728-1734.
- [2]王富勇,陶海荣.骨科内固定材料镁合金的生物学研究进展[J].中国矫形外科杂志,2015,23(4):322-324.
- [3]Ratna Sunil B,Sampath Kumar TS,Chakkingal U,et al.In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing[J].Mater Sci Eng C Mater Biol Appl,2016,59:356-367.
- [4]于国宁,潘锋,闻久全,等.镁合金体内植入生物安全性的初步研究[J].中国矫形外科杂志,2008,16(13):1015-1018.
- [5]Castellani C,Lindtner RA,Hausbrandt P,et al.Bone-implant interface strength and osseointegration:biodegradable magnesium alloy versus standard titanium control[J].Acta Biomater,2011,7(1):432-440.
- [6]Han P,Tan M,Zhang S,et al.Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle[J].Int J Mol Sci,2014,15(2):2959-2970.
- [7]Kraus T,Fischerauer SF,Hnzi AC,et al.Magnesium alloys for temporary implants in osteosynthesis:in vivo studies of their degradation and interaction with bone[J].Acta Biomater,2012,8(3):1230-1238.
- [8]王树峰,李春荣,王程越,等.微弧氧化AZ31镁合金的生物相容性[J].中国组织工程研究,2012,16(38):7101-7106.
- [9]Lindtner RA,Castellani C,Tangl S,et al.Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis[J].J Mech Behav Biomed Mater,2013,28(28c):232-243.
- [10]Brown A,Zaky S,Ray H Jr,et al.Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction[J].Acta Biomater,2015,11(1):543-553.
- [11]Liu H,Wang R,Chu HK,et al.Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds[J].J Biomed Mater Res A,2015,103(9):2966-2973.
- [12]薛静,彭江,汪爱媛,等.活体小动物Micro-CT动态评价大鼠股骨牵张成骨[J].中国矫形外科杂志,2010,18(9):752-758.
- [13]彭江,汪爱媛,孙明学,等.Micro-CT在松质骨结构研究中的应用[J].中国矫形外科杂志,2005,13(11):859-861.
- [14]Clark DP,Badea CT.Micro-CT of rodents:State-of-the-art and future perspectives[J].Physica Med,2014,30(6):619-634.
- [15]Schambach SJ,Bag S,Schilling L,et al.Application of micro-CT in small animal imaging[J].Methods,2010,50(1):2-13.
- [16]Fischerauer SF,Kraus T,Wu X,et al.In vivo degradation performance of micro-arc-oxidized magnesium implants:a micro-CT study in rats[J].Acta Biomater,2013,9(2):5411-5420.
- [17]张涛,武肖娜,尹庆水,等.镁合金AZ31B材料表性与成骨细胞的黏附[J].中国组织工程研究,2013,17(12):2123-2130.
- [18]齐峥嵘,张强,殷毅,等.可降解镁合金作为骨植入材料的体内研究进展[J].中国修复重建外科杂志,2012,26(11):1381-1386.
- [19]Brooks EK,Der S,Ehrensberger MT.Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions[J].Mater Sci Eng C Mater Biol Appl,2016,60(3):427-436.
- [20]Zhao N,Zhu DH.Collagen self-assembly on orthopedic magnesium biomaterials surface and subsequent bone cell attachment[J].PLo S ONE,9(10):e110420.
- [21]Grünewald TA,Ogier A,Akbarzadeh J,et al.Reaction of bone nanostructure to a biodegrading magnesium WZ21 implant-a scanning small-angle X-ray scattering time study[J].Acta Biomater,2016,31:448-457.
- [22]Vladimirov BV,Krit BL,Lyudin VB,et al.Microarc oxidation of magnesium alloys:a review[J].Surface Eng App Elect,2014,50(3):195-232.
- [23]Walker J,Shadanbaz S,Woodfield TB,et al.Magnesium biomaterials for orthopedic application:a review from a biological perspective[J].J Biomed Mater Res B Appl Biomater,2014,102(6):1316-1331.
- [24]Meininger S,Mandal S,Kumar A,et al.Strength reliability and in vitro degradation of three-dimensional powder printed strontiumsubstituted magnesium phosphate scaffolds[J].Acta Biomater,2015,31:401-411.
- [25]Choudhary L,Raman S.Magnesium alloys as body implants:Fracture mechanism under dynamic and static loadings in a physiological environment[J].Acta Biomater,2012,8(2):916-923.
- [26]Witte F.The history of biodegradable magnesium implants:a review[J].Acta Biomater,2011,6(5):1680-1692.
- [27]张佳,宗阳,付彭怀,等.镁合金在生物医用材料领域的应用及发展前景[J].中国组织工程研究与临床康复,2009,13(29):547-575.
- [28]苗波,姜德志.医用镁合金微弧氧化后不同涂层抑菌性及骨诱导性的研究[J].黑龙江医药科学,2009,32(5):7-8.
- [29]Vanderoost J,Lenthe GH.From histology to micro-CT:Measuring and modeling resorption cavities and their relation to bone competence[J].World J Radio,2014,6(9):643-656.
- [30]Pereira RC,Bischoff DS,Yamaguchi D,et al.Micro-CT in the assessment of pediatric renal osteodystrophy by bone histomorphometry[J].Clin J Am Soc Nephrol,2016,11(3):481-487.
- [31]Daoust A,Barbier EL,Bohic S.Manganese enhanced MRI in rat hippocampus:a correlative study with synchrotron X-ray microprobe[J].Neuroimage,2013,64(1):10-18.