巨噬细胞在髋假体周围感染与骨整合的作用Role of macrophages in periprosthetic infection and osseointegration of the hip joint
李子阳,满振涛,柴啟浩,李伟
摘要(Abstract):
假体周围感染以及由感染导致的骨溶解是目前人工髋关节置换术后的最严峻挑战。巨噬细胞作为机体抵御感染的第一道防线,不仅能够通过吞噬、极化等多种途径发挥抗感染作用,还可以分泌多种活性因子,促进骨髓间充质干细胞成骨分化,实现骨整合。因此,人工髋关节置换术后为同步实现预防感染和促进骨整合,假体-骨界面的巨噬细胞免疫调控机制受到广泛关注。文章综述了巨噬细胞在关节假体置入过程中所涉及的表型转换及其抗感染和成骨作用,可为研发涉及巨噬细胞免疫调控的多功能假体提供理论依据。
关键词(KeyWords): 髋关节置换术;假体周围感染;巨噬细胞骨整合;免疫调节
基金项目(Foundation):
作者(Author): 李子阳,满振涛,柴啟浩,李伟
参考文献(References):
- [1]刘明,李佩佳.全髋关节置换术[J].中国矫形外科杂志, 2004,12(15):1178-1181.
- [2]侯开宇,王宇飞,陆晓涛,等.巨噬细胞炎性蛋白2及其受体在假体无菌性松动周围组织及外周血中的表达及临床意义[J].中国矫形外科杂志, 2015, 23(13):1222-1226.
- [3]郎明磊,刘儒森.人工全髋关节置换术后并发症[J].中国矫形外科杂志, 2004, 12(11):861-862.
- [4]刘树民,贾古友,王晗,等.关节置换术后假体周围感染分子生物学诊断研究进展[J].中国矫形外科杂志, 2018, 26(23):2167-2171.
- [5] Josse J, Valour F, Maali Y, et al. Interaction between Staphylococcal biofilm and bone:how does the presence of biofilm promote prosthesis loosening[J]. Front Microbiol, 2019, 10:1602.
- [6] Niu Y, Wang Z, Shi Y, et al. Modulating macrophage activities to promote endogenous bone regeneration:biological mechanisms and engineering approaches[J]. Bioact Mater, 2021, 6(1):244-261.
- [7]李莺,李长义.钛种植体表面改性对巨噬细胞极化和诱导成骨的影响[J].中国组织工程研究, 2018, 22(10):1573.
- [8] Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10:1462.
- [9] Fan L, Guan P, Xiao C, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration[J]. Bioact Mater, 2021, 6(9):2754-2766.
- [10] Pidwill GR, Gibson JF, Cole J, et al. The role of macrophages in Staphylococcus aureus infection[J]. Front Immunol, 2021, 12:3506.
- [11] Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446):445-455.
- [12] Swanson JA. Shaping cups into phagosomes and macropinosomes[J]. Nat Rev Mol Cell Biol, 2008, 9(8):639-649.
- [13] Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci, 2014, 10(5):520.
- [14] Chan LC, Rossetti M, Miller LS, et al. Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory[J]. Proc Natl Acad Sci, 2018, 115(47):E11111-E11119.
- [15] Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model[J]. J Bone Mine Res, 2011, 26(7):1517-1532.
- [16] Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing:their essential role in endochondral ossification[J]. Bone, 2018, 106:78-89.
- [17] Stefanowski J, Lang A, Rauch A, et al. Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels[J].Front Immunol, 2019, 10:2588.
- [18] Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration:a story of polarization, activation and time[J]. Acta Biomater, 2021, 133:46-57.
- [19] Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions[J]. Nat Rev Rheumatol, 2012, 8(3):133-143.
- [20] Pederson L, Ruan M, Westendorf JJ, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate[J]. Proc Natl Acad Sci, 2008, 105(52):20764-20769.
- [21] Sen CK. Wound healing essentials:let there be oxygen[J]. Wound Repair Regen, 2009, 17(1):1-18.
- [22] Cavalli L, Brandi ML. Periprosthetic bone loss:diagnostic and therapeutic approaches[J]. F1000 Res, 2013, 2:266.
- [23] Glass GE, Chan JK, Freidin A, et al. TNF-α promotes fracture repair by augmenting the recruitment and differentiation of musclederived stromal cells[J]. Proc Natl Acad Sci, 2011, 108(4):1585-1590.
- [24] Jay PR, Centrella M, Lorenzo J, et al. Oncostatin-M:a new bone active cytokine that activates osteoblasts and inhibits bone resorption[J]. Endocrinology, 1996, 137(4):1151-1158.
- [25] Bebko SP, Green DM, Awad SS. Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation[J]. JAMA Surg, 2015, 150(5):390-395.
- [26] Foster TJ. Immune evasion by staphylococci[J]. Nat Rev Microbiol, 2005, 3(12):948-958.
- [27] Karavolos MH, Horsburgh MJ, Ingham E, et al. Role and regulation of the superoxide dismutases of Staphylococcus aureus[J]. Microbiology, 2003, 149(10):2749-2758.
- [28] Thiriot JD, Martinez-Martinez YB, Endsley JJ, et al. Hacking the host:exploitation of macrophage polarization by intracellular bacterial pathogens[J]. Pathogens Dis, 2020, 78(1):ftaa009.
- [29] Zhang S, Chai Q, Man Z, et al. Bioinspired nano-painting on orthopedic implants orchestrates periprosthetic anti-infection and osseointegration in a rat model of arthroplasty[J]. Chem Eng J, 2022,435:134848.
- [30] Tan L, Li J, Liu X, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light[J]. Adv Mater, 2018, 30(31):1801808.
- [31] Trindade R, Albrektsson T, Tengvall P, et al. Foreign body reaction to biomaterials:on mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res, 2016, 18(1):192-203.
- [32] Navegantes KC, de Souza Gomes R, Pereira PAT, et al. Immune modulation of some autoimmune diseases:the critical role of macrophages and neutrophils in the innate and adaptive immunity[J]. J Transl Med, 2017, 15(1):1-21.
- [33] Kelly B, O′neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity[J]. Cell Res, 2015, 25(7):771-784.
- [34] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2):86-100.
- [35] Li L, Li Q, Gui L, et al. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis[J]. Bioact Mater, 2023, 19:24-37.
- [36] Jiang J, Liu W, Xiong Z, et al. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation[J]. Biomater Adv, 2022,134:112640.
- [37] Sun J, Huang Y, Zhao H, et al. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation[J]. Bioact Mater, 2021,9:1-14.
- [38] Wang T, Bai J, Lu M, et al. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking[J]. Nat Commun, 2022, 13(1):1-17.
- [39] Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J].Biomaterials, 2015, 37:194-207.
- [40] Bai L, Chen P, Zhao Y, et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration[J]. Biomaterials, 2021, 278:121162.