单节段Bryan颈椎间盘置换远期屈伸旋转中心变化Long-term variation of flexion-extension center of rotation secondary to single-segment Bryan cervical disc replacement
李传鸿,俞兴,熊洋,杨永栋,王逢贤,赵赫
摘要(Abstract):
[目的]观察单节段Bryan人工颈椎间盘置换术(artificial cervical disc replacement, ACDR)远期随访的运动学结果。[方法]回顾性分析2010年1月—2013年3月于本院行单节段Bryan ACDR且末次随访手术节段活动度(range of motion,ROM)>5°的38例患者的临床资料。观察临床与影像结果。[结果] 38例患者均顺利完成手术,无严重并发症。随访84~118个月,平均(93.97±9.67)个月。末次随访时,患者颈椎病相关症状明显改善,JOA评分较术前明显升高(P<0.05),NDI评分、颈痛及上肢痛VAS评分较术前显著降低(P<0.05)。至末次随访期时,所有患者均未出现症状加剧,无再次入院,无翻修手术。影像方面,与术前相比,末次随访时颈椎整体曲度和手术节段曲度均显著增加(P<0.05),而颈椎整体ROM、手术节段ROM、上邻节段ROM和下邻节段ROM,以及COR-X和COR-Y均无显著改变(P>0.05)。相关分析表明,末次随访时COR-Y与手术节段ROM呈显著负相关(P<0.05),与手术节段平移距离呈显著负相关(P<0.05);此外,手术节段ROM与同节段平移距离呈正相关(r=0.772,P<0.05)。COR-Y与其他临床和影像指标均无明显相关性(P>0.05),而COR-X与任何指标均无相关性(P>0.05)。[结论]单节段Bryan ACDR 7年以上随访临床疗效与影像结果满意。末次随访时手术节段COR-Y与平移、ROM的关系与正常颈椎节段类似,这有助于模拟颈椎生理运动模式。
关键词(KeyWords): 人工颈椎间盘置换术;Bryan颈椎间盘;旋转中心;运动学;临床疗效
基金项目(Foundation): 潍坊奥精仿生骨多中心临床研究项目(编号:601111)
作者(Author): 李传鸿,俞兴,熊洋,杨永栋,王逢贤,赵赫
参考文献(References):
- [1] Findlay C, Ayis S, Demetriades AK. Total disc replacement versus anterior cervical discectomy and fusion:a systematic review with meta-analysis of data from a total of 3160 patients across 14 randomized controlled trials with both short-and medium-to longterm outcomes[J]. Bone Joint J, 2018, 100-B(8):991-1001.
- [2] Lavelle WF, Riew KD, Levi AD, et al. Ten-year outcomes of cervical disc replacement with the BRYAN cervical disc:results from a prospective, randomized, controlled clinical trial[J]. Spine(Phila Pa 1976), 2019, 44(9):601-608.
- [3] Powell JW, Sasso RC, Metcalf NH, et al. Quality of spinal motion with cervical disk arthroplasty:computer-aided radiographic analysis[J]. J Spinal Disord Tech, 2010, 23(2):89-95.
- [4] Mo Z, Zhao Y, Du C, et al. Does location of rotation center in artificial disc affect cervical biomechanics[J]. Spine(Phila Pa 1976),2015, 40(8):E469-E475.
- [5] Sang H, Cui W, Sang D, et al. How center of rotation changes and what affects these after cervical arthroplasty:a systematic review and meta-analysis[J]. World Neurosurg, 2020, 135(3):e702-e709.
- [6] Guo Z, Cui W, Sang DC, et al. Clinical relevance of cervical kinematic quality parameters in planar movement[J]. Orthop Surg,2019, 11(2):167-175.
- [7] Anderst W, Baillargeon E, Donaldson W, et al. Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension:implications for artificial disc design and evaluation of motion quality after arthrodesis[J]. Spine(Phila Pa1976), 2013, 38(10):E594-E601.
- [8] Pickett GE, Rouleau JP, Duggal N. Kinematic analysis of the cervical spine following implantation of an artificial cervical disc[J].Spine(Phila Pa 1976), 2005, 30(17):1949-1954.
- [9] Liu B, Liu Z, VanHoof T, et al. Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc[J]. Eur Spine J, 2014, 23(11):2307-2313.
- [10] Reitman CA, Mauro KM, Nguyen L, et al. Intervertebral motion between flexion and extension in asymptomatic individuals[J].Spine(Phila Pa 1976), 2004, 29(24):2832-2843.
- [11] Amevo B, Worth D, Bogduk N. Instantaneous axes of rotation of the typical cervical motion segments:a study in normal volunteers[J]. Clin Biomech, 1991, 6(2):111-117.
- [12] Amevo B, Worth D, Bogduk N. Instantaneous axes of rotation of the typical cervical motion segments:II. Optimization of technical errors[J]. Clin Biomech, 1991, 6(1):38-46.
- [13] Li Y, Zhang Z, Liao Z, et al. Finite element analysis of influence of axial position of center of rotation of a cervical total disc replacement on biomechanical parameters:simulated 2-level replacement based on a validated model[J]. World Neurosurg, 2017, 106:932-938.
- [14] Bogduk N, Mercer S. Biomechanics of the cervical spine. I:Normal kinematics[J]. Clin Biomech, 2000, 15(9):633-648.
- [15] Penning L. Differences in anatomy, motion, development and aging of the upper and lower cervical disk segments[J]. Clin Biomech,1988, 3(1):37-47.
- [16] Lazaro BC, Yucesoy K, Yuksel KZ, et al. Effect of arthroplasty design on cervical spine kinematics:analysis of the Bryan Disc, ProDisc-C, and Synergy disc[J]. Neurosurg Focus, 2010, 28(6):E6.
- [17] Ryu WH, Kowalczyk I, Duggal N. Long-term kinematic analysis of cervical spine after single-level implantation of Bryan cervical disc prosthesis[J]. Spine J, 2013, 13(6):628-634.
- [18] Koller H, Meier O, Zenner J, et al. In vivo analysis of cervical kinematics after implantation of a minimally constrained cervical artificial disc replacement[J]. Eur Spine J, 2013, 22(4):747-758.
- [19] Nowitzke A, Westaway M, Bogduk N. Cervical zygapophyseal joints:geometrical parameters and relationship to cervical kinematics[J]. Clin Biomech, 1994, 9(6):342-348.
- [20] Bogduk N, Amevo B, Pearcy M. A biological basis for instantaneous centres of rotation of the vertebral column[J]. Proc Inst Mech Eng H, 1995, 209(3):177-183.
- [21] White AR, Panjabi MM. The basic kinematics of the human spine.A review of past and current knowledge[J]. Spine(Phila Pa1976), 1978, 3(1):12-20.
- [22] Yue JJ, Bertagnoli R, McAfee PC, et al. Motion preservation surgery of the spine:advanced techniques and controversies[M].Philadelphia:Saunders Elsevier, 2008:85-96.
- [23] White AR, Johnson RM, Panjabi MM, et al. Biomechanical analysis of clinical stability in the cervical spine[J]. Clin Orthop, 1975,109(109):85-96.
- [24] Muhlbauer M, Tomasch E, Sinz W, et al. In cervical arthroplasty,only prosthesis with flexible biomechanical properties should be used for achieving a near-physiological motion pattern[J]. J Orthop Surg Res, 2020, 15(1):391.
- [25] Duggal N, Bertagnoli R, Rabin D, et al. ProDisc-C:an in vivo kinematic study[J]. J Spinal Disord Tech, 2011, 24(5):334-339.